Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 148
Filtrar
1.
Brain Commun ; 6(2): fcae109, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38601917

RESUMO

Metformin restores the myelination potential of aged rat A2B5+ oligodendrocyte progenitor cells and may enhance recovery in children with post-radiation brain injury. Human late progenitor cells (O4+A2B5+) have a superior capacity to ensheath nanofibres compared to mature oligodendrocytes, with cells from paediatric sources exceeding adults. In this study, we assessed the effects of metformin on ensheathment capacity of human adult and paediatric progenitors and mature oligodendrocytes and related differences to transcriptional changes. A2B5+ progenitors and mature cells, derived from surgical tissues by immune-magnetic separation, were assessed for ensheathment capacity in nanofibre plates over 2 weeks. Metformin (10 µM every other day) was added to selected cultures. RNA was extracted from treated and control cultures after 2 days. For all ages, ensheathment by progenitors exceeded mature oligodendrocytes. Metformin enhanced ensheathment by adult donor cells but reduced ensheathment by paediatric cells. Metformin marginally increased cell death in paediatric progenitors. Metformin-induced changes in gene expression are distinct for each cell type. Adult progenitors showed up-regulation of pathways involved in the process of outgrowth and promoting lipid biosynthesis. Paediatric progenitors showed a relatively greater proportion of down- versus up-regulated pathways, these involved cell morphology, development and synaptic transmission. Metformin-induced AMP-activated protein kinase activation in all cell types; AMP-activated protein kinase inhibitor BML-275 reduced functional metformin effects only with adult cells. Our results indicate age and differentiation stage-related differences in human oligodendroglia lineage cells in response to metformin. Clinical trials for demyelinating conditions will indicate how these differences translate in vivo.

2.
Mol Neurodegener ; 19(1): 31, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38576039

RESUMO

BACKGROUND: Induced pluripotent stem cell-derived microglia (iMGL) represent an excellent tool in studying microglial function in health and disease. Yet, since differentiation and survival of iMGL are highly reliant on colony-stimulating factor 1 receptor (CSF1R) signaling, it is difficult to use iMGL to study microglial dysfunction associated with pathogenic defects in CSF1R. METHODS: Serial modifications to an existing iMGL protocol were made, including but not limited to changes in growth factor combination to drive microglial differentiation, until successful derivation of microglia-like cells from an adult-onset leukoencephalopathy with axonal spheroids and pigmented glia (ALSP) patient carrying a c.2350G > A (p.V784M) CSF1R variant. Using healthy control lines, the quality of the new iMGL protocol was validated through cell yield assessment, measurement of microglia marker expression, transcriptomic comparison to primary microglia, and evaluation of inflammatory and phagocytic activities. Similarly, molecular and functional characterization of the ALSP patient-derived iMGL was carried out in comparison to healthy control iMGL. RESULTS: The newly devised protocol allowed the generation of iMGL with enhanced transcriptomic similarity to cultured primary human microglia and with higher scavenging and inflammatory competence at ~ threefold greater yield compared to the original protocol. Using this protocol, decreased CSF1R autophosphorylation and cell surface expression was observed in iMGL derived from the ALSP patient compared to those derived from healthy controls. Additionally, ALSP patient-derived iMGL presented a migratory defect accompanying a temporal reduction in purinergic receptor P2Y12 (P2RY12) expression, a heightened capacity to internalize myelin, as well as heightened inflammatory response to Pam3CSK4. Poor P2RY12 expression was confirmed to be a consequence of CSF1R haploinsufficiency, as this feature was also observed following CSF1R knockdown or inhibition in mature control iMGL, and in CSF1RWT/KO and CSF1RWT/E633K iMGL compared to their respective isogenic controls. CONCLUSIONS: We optimized a pre-existing iMGL protocol, generating a powerful tool to study microglial involvement in human neurological diseases. Using the optimized protocol, we have generated for the first time iMGL from an ALSP patient carrying a pathogenic CSF1R variant, with preliminary characterization pointing toward functional alterations in migratory, phagocytic and inflammatory activities.


Assuntos
Leucoencefalopatias , Microglia , Adulto , Humanos , Diferenciação Celular , Leucoencefalopatias/metabolismo , Leucoencefalopatias/patologia , Microglia/metabolismo , Fosforilação , Células-Tronco/metabolismo
3.
Nature ; 627(8005): 865-872, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38509377

RESUMO

Disease-associated astrocyte subsets contribute to the pathology of neurologic diseases, including multiple sclerosis and experimental autoimmune encephalomyelitis1-8 (EAE), an experimental model for multiple sclerosis. However, little is known about the stability of these astrocyte subsets and their ability to integrate past stimulation events. Here we report the identification of an epigenetically controlled memory astrocyte subset that exhibits exacerbated pro-inflammatory responses upon rechallenge. Specifically, using a combination of single-cell RNA sequencing, assay for transposase-accessible chromatin with sequencing, chromatin immunoprecipitation with sequencing, focused interrogation of cells by nucleic acid detection and sequencing, and cell-specific in vivo CRISPR-Cas9-based genetic perturbation studies we established that astrocyte memory is controlled by the metabolic enzyme ATP-citrate lyase (ACLY), which produces acetyl coenzyme A (acetyl-CoA) that is used by histone acetyltransferase p300 to control chromatin accessibility. The number of ACLY+p300+ memory astrocytes is increased in acute and chronic EAE models, and their genetic inactivation ameliorated EAE. We also detected the pro-inflammatory memory phenotype in human astrocytes in vitro; single-cell RNA sequencing and immunohistochemistry studies detected increased numbers of ACLY+p300+ astrocytes in chronic multiple sclerosis lesions. In summary, these studies define an epigenetically controlled memory astrocyte subset that promotes CNS pathology in EAE and, potentially, multiple sclerosis. These findings may guide novel therapeutic approaches for multiple sclerosis and other neurologic diseases.


Assuntos
Astrócitos , Encefalomielite Autoimune Experimental , Memória Epigenética , Esclerose Múltipla , Animais , Feminino , Humanos , Masculino , Camundongos , Acetilcoenzima A/metabolismo , Astrócitos/enzimologia , Astrócitos/metabolismo , Astrócitos/patologia , ATP Citrato (pro-S)-Liase/metabolismo , Cromatina/genética , Cromatina/metabolismo , Montagem e Desmontagem da Cromatina , Sequenciamento de Cromatina por Imunoprecipitação , Sistemas CRISPR-Cas , Encefalomielite Autoimune Experimental/enzimologia , Encefalomielite Autoimune Experimental/genética , Encefalomielite Autoimune Experimental/metabolismo , Encefalomielite Autoimune Experimental/patologia , Inflamação/enzimologia , Inflamação/genética , Inflamação/metabolismo , Inflamação/patologia , Esclerose Múltipla/enzimologia , Esclerose Múltipla/genética , Esclerose Múltipla/metabolismo , Esclerose Múltipla/patologia , Análise da Expressão Gênica de Célula Única , Transposases/metabolismo
4.
Glia ; 72(6): 1165-1182, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38497409

RESUMO

Oligodendrocytes (OLs) are key players in the central nervous system, critical for the formation and maintenance of the myelin sheaths insulating axons, ensuring efficient neuronal communication. In the last decade, the use of human induced pluripotent stem cells (iPSCs) has become essential for recapitulating and understanding the differentiation and role of OLs in vitro. Current methods include overexpression of transcription factors for rapid OL generation, neglecting the complexity of OL lineage development. Alternatively, growth factor-based protocols offer physiological relevance but struggle with efficiency and cell heterogeneity. To address these issues, we created a novel SOX10-P2A-mOrange iPSC reporter line to track and purify oligodendrocyte precursor cells. Using this reporter cell line, we analyzed an existing differentiation protocol and shed light on the origin of glial cell heterogeneity. Additionally, we have modified the differentiation protocol, toward enhancing reproducibility, efficiency, and terminal maturity. Our approach not only advances OL biology but also holds promise to accelerate research and translational work with iPSC-derived OLs.


Assuntos
Células-Tronco Pluripotentes Induzidas , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Linhagem da Célula , Reprodutibilidade dos Testes , Neurogênese , Oligodendroglia/metabolismo , Diferenciação Celular/fisiologia , Fatores de Transcrição SOXE/genética , Fatores de Transcrição SOXE/metabolismo
5.
Nat Commun ; 15(1): 1524, 2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38374028

RESUMO

Oligodendrocyte (OL) injury and subsequent loss is a pathologic hallmark of multiple sclerosis (MS). Stress granules (SGs) are membrane-less organelles containing mRNAs stalled in translation and considered as participants of the cellular response to stress. Here we show SGs in OLs in active and inactive areas of MS lesions as well as in normal-appearing white matter. In cultures of primary human adult brain derived OLs, metabolic stress conditions induce transient SG formation in these cells. Combining pro-inflammatory cytokines, which alone do not induce SG formation, with metabolic stress results in persistence of SGs. Unlike sodium arsenite, metabolic stress induced SG formation is not blocked by the integrated stress response inhibitor. Glycolytic inhibition also induces persistent SGs indicating the dependence of SG formation and disassembly on the energetic glycolytic properties of human OLs. We conclude that SG persistence in OLs in MS reflects their response to a combination of metabolic stress and pro-inflammatory conditions.


Assuntos
Grânulos Citoplasmáticos , Esclerose Múltipla , Humanos , Grânulos Citoplasmáticos/metabolismo , Grânulos de Estresse , Oligodendroglia , Citocinas/metabolismo , Estresse Fisiológico , Esclerose Múltipla/metabolismo
6.
Brain ; 147(2): 427-443, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-37671615

RESUMO

Mer tyrosine kinase (MerTK) is a receptor tyrosine kinase that mediates non-inflammatory, homeostatic phagocytosis of diverse types of cellular debris. Highly expressed on the surface of microglial cells, MerTK is of importance in brain development, homeostasis, plasticity and disease. Yet, involvement of this receptor in the clearance of protein aggregates that accumulate with ageing and in neurodegenerative diseases has yet to be defined. The current study explored the function of MerTK in the microglial uptake of alpha-synuclein fibrils which play a causative role in the pathobiology of synucleinopathies. Using human primary and induced pluripotent stem cell-derived microglia, the MerTK-dependence of alpha-synuclein fibril internalization was investigated in vitro. Relevance of this pathway in synucleinopathies was assessed through burden analysis of MERTK variants and analysis of MerTK expression in patient-derived cells and tissues. Pharmacological inhibition of MerTK and siRNA-mediated MERTK knockdown both caused a decreased rate of alpha-synuclein fibril internalization by human microglia. Consistent with the non-inflammatory nature of MerTK-mediated phagocytosis, alpha-synuclein fibril internalization was not observed to induce secretion of pro-inflammatory cytokines such as IL-6 or TNF, and downmodulated IL-1ß secretion from microglia. Burden analysis in two independent patient cohorts revealed a significant association between rare functionally deleterious MERTK variants and Parkinson's disease in one of the cohorts (P = 0.002). Despite a small upregulation in MERTK mRNA expression in nigral microglia from Parkinson's disease/Lewy body dementia patients compared to those from non-neurological control donors in a single-nuclei RNA-sequencing dataset (P = 5.08 × 10-21), no significant upregulation in MerTK protein expression was observed in human cortex and substantia nigra lysates from Lewy body dementia patients compared to controls. Taken together, our findings define a novel role for MerTK in mediating the uptake of alpha-synuclein fibrils by human microglia, with possible involvement in limiting alpha-synuclein spread in synucleinopathies such as Parkinson's disease. Upregulation of this pathway in synucleinopathies could have therapeutic values in enhancing alpha-synuclein fibril clearance in the brain.


Assuntos
Doença por Corpos de Lewy , Doença de Parkinson , Sinucleinopatias , Humanos , alfa-Sinucleína/metabolismo , c-Mer Tirosina Quinase/metabolismo , Doença por Corpos de Lewy/metabolismo , Microglia/metabolismo , Doença de Parkinson/metabolismo , Proteínas Tirosina Quinases , Sinucleinopatias/metabolismo
7.
EBioMedicine ; 96: 104789, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37703640

RESUMO

BACKGROUND: B cells can be enriched within meningeal immune-cell aggregates of multiple sclerosis (MS) patients, adjacent to subpial cortical demyelinating lesions now recognized as important contributors to progressive disease. This subpial demyelination is notable for a 'surface-in' gradient of neuronal loss and microglial activation, potentially reflecting the effects of soluble factors secreted into the CSF. We previously demonstrated that MS B-cell secreted products are toxic to oligodendrocytes and neurons. The potential for B-cell-myeloid cell interactions to propagate progressive MS is of considerable interest. METHODS: Secreted products of MS-implicated pro-inflammatory effector B cells or IL-10-expressing B cells with regulatory potential were applied to human brain-derived microglia or monocyte-derived macrophages, with subsequent assessment of myeloid phenotype and function through measurement of their expression of pro-inflammatory, anti-inflammatory and homeostatic/quiescent molecules, and phagocytosis (using flow cytometry, ELISA and fluorescently-labeled myelin). Effects of secreted products of differentially activated microglia on B-cell survival and activation were further studied. FINDINGS: Secreted products of MS-implicated pro-inflammatory B cells (but not IL-10 expressing B cells) substantially induce pro-inflammatory cytokine (IL-12, IL-6, TNFα) expression by both human microglia and macrophage (in a GM-CSF dependent manner), while down-regulating their expression of IL-10 and of quiescence-associated molecules, and suppressing their myelin phagocytosis. In contrast, secreted products of IL-10 expressing B cells upregulate both human microglia and macrophage expression of quiescence-associated molecules and enhance their myelin phagocytosis. Secreted factors from pro-inflammatory microglia enhance B-cell activation. INTERPRETATION: Potential cross-talk between disease-relevant human B-cell subsets and both resident CNS microglia and infiltrating macrophages may propagate CNS-compartmentalized inflammation and injury associated with MS disease progression. These interaction represents an attractive therapeutic target for agents such as Bruton's tyrosine kinase inhibitors (BTKi) that modulate responses of both B cells and myeloid cells. FUNDING: Stated in Acknowledgments section of manuscript.

8.
Acta Neuropathol Commun ; 11(1): 108, 2023 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-37408029

RESUMO

Oligodendrocyte (OL) injury and loss are central features of evolving lesions in multiple sclerosis. Potential causative mechanisms of OL loss include metabolic stress within the lesion microenvironment. Here we use the injury response of primary human OLs (hOLs) to metabolic stress (reduced glucose/nutrients) in vitro to help define the basis for the in situ features of OLs in cases of MS. Under metabolic stress in vitro, we detected reduction in ATP levels per cell that precede changes in survival. Autophagy was initially activated, although ATP levels were not altered by inhibitors (chloroquine) or activators (Torin-1). Prolonged stress resulted in autophagy failure, documented by non-fusion of autophagosomes and lysosomes. Consistent with our in vitro results, we detected higher expression of LC3, a marker of autophagosomes in OLs, in MS lesions compared to controls. Both in vitro and in situ, we observe a reduction in nuclear size of remaining OLs. Prolonged stress resulted in increased ROS and cleavage of spectrin, a target of Ca2+-dependent proteases. Cell death was however not prevented by inhibitors of ferroptosis or MPT-driven necrosis, the regulated cell death (RCD) pathways most likely to be activated by metabolic stress. hOLs have decreased expression of VDAC1, VDAC2, and of genes regulating iron accumulation and cyclophilin. RNA sequencing analyses did not identify activation of these RCD pathways in vitro or in MS cases. We conclude that this distinct response of hOLs, including resistance to RCD, reflects the combined impact of autophagy failure, increased ROS, and calcium influx, resulting in metabolic collapse and degeneration of cellular structural integrity. Defining the basis of OL injury and death provides guidance for development of neuro-protective strategies.


Assuntos
Esclerose Múltipla Crônica Progressiva , Esclerose Múltipla , Humanos , Esclerose Múltipla/patologia , Espécies Reativas de Oxigênio/metabolismo , Oligodendroglia/patologia , Morte Celular , Esclerose Múltipla Crônica Progressiva/patologia , Trifosfato de Adenosina/metabolismo
9.
J Clin Invest ; 133(7)2023 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-37009896

RESUMO

Multiple sclerosis (MS) is an autoimmune disease of the CNS, featuring inflammation and demyelination with variable recovery. In this issue of the JCI, Kapell, Fazio, and authors address the potential for targeting neuron-oligodendrocyte potassium shuttling at the nodes of Ranvier as a neuroprotective strategy during inflammatory demyelination of the CNS in experimental MS. Their extensive and impressive study could serve as a template for defining the physiologic properties of a putative protective pathway. The authors examined MS features in existent disease models, investigated the impact of pharmacologic intervention, and evaluated its status in tissues from patients with MS. We await future studies that will tackle the challenge of translating these findings into a clinical therapy.


Assuntos
Encefalomielite Autoimune Experimental , Esclerose Múltipla , Animais , Esclerose Múltipla/tratamento farmacológico , Neuroproteção , Oligodendroglia , Neurônios , Inflamação
10.
Science ; 379(6636): 1023-1030, 2023 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-36893254

RESUMO

Cell-cell interactions in the central nervous system play important roles in neurologic diseases. However, little is known about the specific molecular pathways involved, and methods for their systematic identification are limited. Here, we developed a forward genetic screening platform that combines CRISPR-Cas9 perturbations, cell coculture in picoliter droplets, and microfluidic-based fluorescence-activated droplet sorting to identify mechanisms of cell-cell communication. We used SPEAC-seq (systematic perturbation of encapsulated associated cells followed by sequencing), in combination with in vivo genetic perturbations, to identify microglia-produced amphiregulin as a suppressor of disease-promoting astrocyte responses in multiple sclerosis preclinical models and clinical samples. Thus, SPEAC-seq enables the high-throughput systematic identification of cell-cell communication mechanisms.


Assuntos
Anfirregulina , Astrócitos , Comunicação Autócrina , Testes Genéticos , Técnicas Analíticas Microfluídicas , Microglia , Astrócitos/fisiologia , Testes Genéticos/métodos , Ensaios de Triagem em Larga Escala , Técnicas Analíticas Microfluídicas/métodos , Microglia/fisiologia , Anfirregulina/genética , Comunicação Autócrina/genética , Expressão Gênica , Humanos
11.
Glia ; 71(5): 1278-1293, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36680780

RESUMO

Efforts to understand microglia function in health and diseases have been hindered by the lack of culture models that recapitulate in situ cellular properties. In recent years, the use of serum-free media with brain-derived growth factors (colony stimulating factor 1 receptor [CSF1R] ligands and TGF-ß1/2) have been favored for the maintenance of rodent microglia as they promote morphological features observed in situ. Here we study the functional and transcriptomic impacts of such media on human microglia (hMGL). Media formulation had little impact on microglia transcriptome assessed by RNA sequencing which was sufficient to significantly alter microglia capacity to phagocytose myelin debris and to elicit an inflammatory response to lipopolysaccharide. When compared to immediately ex vivo microglia from the same donors, the addition of fetal bovine serum to culture media, but not growth factors, was found to aid in the maintenance of key signature genes including those involved in phagocytic processes. A phenotypic shift characterized by CSF1R downregulation in culture correlated with a lack of reliance on CSF1R signaling for survival. Consequently, no improvement in cell survival was observed following culture supplementation with CSF1R ligands. Our study provides better understanding of hMGL in culture, with observations that diverge from those previously made in rodent microglia.


Assuntos
Microglia , Receptores de Fator Estimulador das Colônias de Granulócitos e Macrófagos , Humanos , Microglia/metabolismo , Meios de Cultura/metabolismo , Receptores de Fator Estimulador das Colônias de Granulócitos e Macrófagos/genética , Receptores de Fator Estimulador das Colônias de Granulócitos e Macrófagos/metabolismo , Receptores Proteína Tirosina Quinases/metabolismo , Transdução de Sinais , Receptores de Fator Estimulador de Colônias/metabolismo
12.
Commun Biol ; 5(1): 1274, 2022 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-36402839

RESUMO

Myelin, the membrane surrounding neuronal axons, is critical for central nervous system (CNS) function. Injury to myelin-forming oligodendrocytes (OL) in chronic neurological diseases (e.g. multiple sclerosis) ranges from sublethal to lethal, leading to OL dysfunction and myelin pathology, and consequent deleterious impacts on axonal health that drive clinical impairments. This is regulated by intrinsic factors such as heterogeneity and age, and extrinsic cellular and molecular interactions. Here, we discuss the responses of OLs to injury, and perspectives for therapeutic targeting. We put forward that targeting mature OL health in neurological disease is a promising therapeutic strategy to support CNS function.


Assuntos
Esclerose Múltipla , Oligodendroglia , Humanos , Oligodendroglia/fisiologia , Bainha de Mielina/fisiologia , Sistema Nervoso Central , Axônios/fisiologia
13.
Glia ; 70(10): 1938-1949, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35735919

RESUMO

Morphological and emerging molecular studies have provided evidence for heterogeneity within the oligodendrocyte population. To address the regional and age-related heterogeneity of human mature oligodendrocytes (MOLs) we applied single-cell RNA sequencing to cells isolated from cortical/subcortical, subventricular zone brain tissue samples, and thoracolumbar spinal cord samples. Unsupervised clustering of cells identified transcriptionally distinct MOL subpopulations across regions. Spinal cord MOLs, but not microglia, exhibited cell-type-specific upregulation of immune-related markers compared to the other adult regions. SVZ MOLs showed an upregulation of select number of development-linked transcription factors compared to other regions; however, pseudotime trajectory analyses did not identify a global developmental difference. Age-related analysis of cortical/subcortical samples indicated that pediatric MOLs, especially from under age 5, retain higher expression of genes linked to development and to immune activity with pseudotime analysis favoring a distinct developmental stage. Our regional and age-related studies indicate heterogeneity of MOL populations in the human CNS that may reflect developmental and environmental influences.


Assuntos
Oligodendroglia , Medula Espinal , Encéfalo , Criança , Pré-Escolar , Humanos , Microglia , Oligodendroglia/metabolismo
14.
Brain ; 145(12): 4320-4333, 2022 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-35202462

RESUMO

Early multiple sclerosis lesions feature relative preservation of oligodendrocyte cell bodies with dying back retraction of their myelinating processes. Cell loss occurs with disease progression. Putative injury mediators include metabolic stress (low glucose/nutrient), pro-inflammatory mediators (interferon γ and tumour necrosis factor α), and excitotoxins (glutamate). Our objective was to compare the impact of these disease relevant mediators on the injury responses of human mature oligodendrocytes. In the current study, we determined the effects of these mediators on process extension and survival of human brain derived mature oligodendrocytes in vitro and used bulk RNA sequencing to identify distinct effector mechanisms that underlie the responses. All mediators induced significant process retraction of the oligodendrocytes in dissociated cell culture. Only metabolic stress (low glucose/nutrient) conditions resulted in delayed (4-6 days) non-apoptotic cell death. Metabolic effects were associated with induction of the integrated stress response, which can be protective or contribute to cell injury dependent on its level and duration of activation. Addition of Sephin1, an agonist of the integrated stress response induced process retraction under control conditions and further enhanced retraction under metabolic stress conditions. The antagonist ISRIB restored process outgrowth under stress conditions, and if added to already stressed cells, reduced delayed cell death and prolonged the period in which recovery could occur. Inflammatory cytokine functional effects were associated with activation of multiple signalling pathways (including Jak/Stat-1) that regulate process outgrowth, without integrated stress response induction. Glutamate application produced limited transcriptional changes suggesting a contribution of effects directly on cell processes. Our comparative studies indicate the need to consider both the specific injury mediators and the distinct cellular mechanisms of responses to them by human oligodendrocytes to identify effective neuroprotective therapies for multiple sclerosis.


Assuntos
Esclerose Múltipla , Humanos , Esclerose Múltipla/patologia , Oligodendroglia/metabolismo , Encéfalo/patologia , Morte Celular , Glucose/metabolismo , Células Cultivadas
15.
Sci Transl Med ; 14(626): eabj0473, 2022 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-34985970

RESUMO

The migration of circulating leukocytes into the central nervous system (CNS) is a key driver of multiple sclerosis (MS) pathogenesis. The monoclonal antibody natalizumab proved that pharmaceutically obstructing this process is an effective therapeutic approach for treating relapsing-remitting MS (RRMS). Unfortunately, the clinical efficacy of natalizumab is somewhat offset by its incapacity to control the progressive forms of MS (PMS) and by life-threatening side effects in RRMS rising from the expression of its molecular target, very late antigen 4 (VLA4), on most immune cells and consequent impairment of CNS immunosurveillance. Here, we identified dual immunoglobulin domain containing cell adhesion molecule (DICAM) as a cell trafficking molecule preferentially expressed by T helper 17 (TH17)­polarized CD4+ T lymphocytes. We found that DICAM expression on circulating CD4+ T cells was increased in patients with active RRMS and PMS disease courses, and expression of DICAM ligands was increased on the blood-brain barrier endothelium upon inflammation and in MS lesions. Last, we demonstrated that pharmaceutically neutralizing DICAM reduced murine and human TH17 cell trafficking across the blood-brain barrier in vitro and in vivo, and alleviated disease symptoms in four distinct murine autoimmune encephalomyelitis models, including relapsing-remitting and progressive disease models. Collectively, our data highlight DICAM as a candidate therapeutic target to impede the migration of disease-inducing leukocytes into the CNS in both RRMS and PMS and suggest that blocking DICAM with a monoclonal antibody may be a promising therapeutic approach.


Assuntos
Esclerose Múltipla Recidivante-Remitente , Esclerose Múltipla , Animais , Barreira Hematoencefálica/metabolismo , Moléculas de Adesão Celular/metabolismo , Humanos , Camundongos , Esclerose Múltipla/tratamento farmacológico , Esclerose Múltipla/metabolismo , Natalizumab/metabolismo , Natalizumab/farmacologia , Natalizumab/uso terapêutico , Doenças Neuroinflamatórias , Linfócitos T/metabolismo , Células Th17
16.
Ann Neurol ; 91(2): 178-191, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34952986

RESUMO

OBJECTIVE: Myelin regeneration in the human central nervous system relies on progenitor cells within the tissue parenchyma, with possible contribution from previously myelinating oligodendrocytes (OLs). In multiple sclerosis, a demyelinating disorder, variables affecting remyelination efficiency include age, severity of initial injury, and progenitor cell properties. Our aim was to investigate the effects of age and differentiation on the myelination potential of human OL lineage cells. METHODS: We derived viable primary OL lineage cells from surgical resections of pediatric and adult brain tissue. Ensheathment capacity using nanofiber assays and transcriptomic profiles from RNA sequencing were compared between A2B5+ antibody-selected progenitors and mature OLs (non-selected cells). RESULTS: We demonstrate that pediatric progenitor and mature cells ensheathed nanofibers more robustly than did adult progenitor and mature cells, respectively. Within both age groups, the percentage of fibers ensheathed and ensheathment length per fiber were greater for A2B5+ progenitors. Gene expression of OL progenitor markers PDGFRA and PTPRZ1 were higher in A2B5+ versus A2B5- cells and in pediatric A2B5+ versus adult A2B5+ cells. The p38 MAP kinases and actin cytoskeleton-associated pathways were upregulated in pediatric cells; both have been shown to regulate OL process outgrowth. Significant upregulation of "cell senescence" genes was detected in pediatric samples; this could reflect their role in development and the increased susceptibility of pediatric OLs to activating cell death responses to stress. INTERPRETATION: Our findings identify specific biological pathways relevant to myelination that are differentially enriched in human pediatric and adult OL lineage cells and suggest potential targets for remyelination enhancing therapies. ANN NEUROL 2022;91:178-191.


Assuntos
Envelhecimento/fisiologia , Diferenciação Celular/fisiologia , Senescência Celular/fisiologia , Bainha de Mielina/fisiologia , Oligodendroglia/fisiologia , Adulto , Morte Celular , Linhagem da Célula , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Masculino , Pessoa de Meia-Idade , Células-Tronco Neurais , RNA-Seq , Receptor alfa de Fator de Crescimento Derivado de Plaquetas , Proteínas Tirosina Fosfatases Classe 5 Semelhantes a Receptores/genética , Transcriptoma , Adulto Jovem
17.
J Neurosci ; 2021 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-34103360

RESUMO

Neuro-immune interaction during development is strongly implicated in the pathogenesis of neurodevelopmental disorders, but the mechanisms that cause neuronal circuit dysregulation are not well understood. We performed in vivo imaging of the developing retinotectal system in the larval zebrafish to characterize the effects of immune system activation on refinement of an archetypal sensory processing circuit. Acute inflammatory insult induced hyper-dynamic remodeling of developing retinal axons in larval fish and increased axon arbor elaboration over days. Using calcium imaging in GCaMP6s transgenic fish we showed that these morphological changes were accompanied by a shift toward decreased visual acuity in tectal cells. This finding was supported by poorer performance in a visually guided behavioral task. We further found that the pro-inflammatory cytokine, interleukin-1ß (IL-1ß) is upregulated by the inflammatory insult, and that down-regulation of IL-1ß abrogated the effects of inflammation on axonal dynamics and growth. Moreover, baseline branching of the RGC arbors in IL-1ß morphant animals was significantly different from that in control larvae, and their performance in a predation assay was impaired, indicating a role for this cytokine in normal neuronal development. This work establishes a simple and powerful non-mammalian model of developmental immune activation and demonstrates a role for IL-1ß in mediating the pathological effects of inflammation on neuronal circuit development.SIGNIFICANCE STATEMENTMaternal immune activation (MIA) can increase the risk of neurodevelopmental disorders in offspring, however the mechanisms involved are not fully understood. Using a non-mammalian vertebrate model of developmental immune activation, we show that even brief activation of inflammatory pathways has immediate and long-term effects on the arborization of axons, and that these morphological changes have functional and behavioral consequences. Finally, we show that the pro-inflammatory cytokine IL-1ß plays an essential role in both the effects of inflammation on circuit formation and normal axonal development. Our data add to a growing body of evidence supporting epidemiological studies linking immune activation to neurodevelopmental disorders, and help shed light on the molecular and cellular processes that contribute to the etiology of these disorders.

18.
Science ; 372(6540)2021 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-33888612

RESUMO

Cell-cell interactions control the physiology and pathology of the central nervous system (CNS). To study astrocyte cell interactions in vivo, we developed rabies barcode interaction detection followed by sequencing (RABID-seq), which combines barcoded viral tracing and single-cell RNA sequencing (scRNA-seq). Using RABID-seq, we identified axon guidance molecules as candidate mediators of microglia-astrocyte interactions that promote CNS pathology in experimental autoimmune encephalomyelitis (EAE) and, potentially, multiple sclerosis (MS). In vivo cell-specific genetic perturbation EAE studies, in vitro systems, and the analysis of MS scRNA-seq datasets and CNS tissue established that Sema4D and Ephrin-B3 expressed in microglia control astrocyte responses via PlexinB2 and EphB3, respectively. Furthermore, a CNS-penetrant EphB3 inhibitor suppressed astrocyte and microglia proinflammatory responses and ameliorated EAE. In summary, RABID-seq identified microglia-astrocyte interactions and candidate therapeutic targets.


Assuntos
Astrócitos/fisiologia , Comunicação Celular , Sistema Nervoso Central/patologia , Encefalomielite Autoimune Experimental/fisiopatologia , Microglia/fisiologia , Esclerose Múltipla/fisiopatologia , Análise de Célula Única , Animais , Antígenos CD/metabolismo , Encéfalo/patologia , Encéfalo/fisiopatologia , Sistema Nervoso Central/fisiopatologia , Encefalomielite Autoimune Experimental/patologia , Efrina-B3/metabolismo , Herpesvirus Suídeo 1/genética , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias/metabolismo , Esclerose Múltipla/patologia , NF-kappa B/metabolismo , Proteínas do Tecido Nervoso/metabolismo , RNA-Seq , Espécies Reativas de Oxigênio/metabolismo , Receptor EphB3/antagonistas & inibidores , Receptor EphB3/metabolismo , Receptores de Superfície Celular/metabolismo , Semaforinas/metabolismo , Transdução de Sinais , Linfócitos T/fisiologia , Serina-Treonina Quinases TOR/metabolismo
19.
EBioMedicine ; 65: 103276, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33714029

RESUMO

BACKGROUND: In multiple sclerosis loss of myelin and oligodendrocytes impairs saltatory signal transduction and leads to neuronal loss and functional deficits. Limited capacity of oligodendroglial precursor cells to differentiate into mature cells is the main reason for inefficient myelin repair in the central nervous system. Drug repurposing constitutes a powerful approach for identification of pharmacological compounds promoting this process. METHODS: A phenotypic compound screening using the subcellular distribution of a potent inhibitor of oligodendroglial cell differentiation, namely p57kip2, as differentiation competence marker was conducted. Hit compounds were validated in terms of their impact on developmental cell differentiation and myelination using both rat and human primary cell cultures and organotypic cerebellar slice cultures, respectively. Their effect on spontaneous remyelination was then investigated following cuprizone-mediated demyelination of the corpus callosum. FINDINGS: A number of novel small molecules able to promote oligodendroglial cell differentiation were identified and a subset was found to foster human oligodendrogenesis as well as myelination ex vivo. Among them the steroid danazol and the anthelminthic parbendazole were found to increase myelin repair. INTERPRETATION: We provide evidence that early cellular processes involved in differentiation decisions are applicable for the identification of regeneration promoting drugs and we suggest danazol and parbendazole as potent therapeutic candidates for demyelinating diseases. FUNDING: This work was supported by the Jürgen Manchot Foundation, Düsseldorf; Research Commission of the Medical Faculty of Heinrich-Heine-University Düsseldorf; Christiane and Claudia Hempel Foundation; Stifterverband/Novartisstiftung; James and Elisabeth Cloppenburg, Peek and Cloppenburg Düsseldorf Stiftung and International Progressive MS Alliance (BRAVEinMS).


Assuntos
Diferenciação Celular/efeitos dos fármacos , Bainha de Mielina/efeitos dos fármacos , Bibliotecas de Moléculas Pequenas/farmacologia , Animais , Benzimidazóis/farmacologia , Células Cultivadas , Inibidor de Quinase Dependente de Ciclina p57/metabolismo , Danazol/farmacologia , Feminino , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Bainha de Mielina/metabolismo , Oligodendroglia/citologia , Oligodendroglia/metabolismo , Oligodendroglia/patologia , Ratos , Bibliotecas de Moléculas Pequenas/química
20.
Mult Scler Relat Disord ; 50: 102800, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33578206

RESUMO

INTRODUCTION: The Coronavirus disease-19 (COVID-19) pandemic continues to expand across the world. This pandemic has had a significant impact on patients with chronic diseases. Among patients with demyelinating diseases of the central nervous system (CNS), such as Multiple Sclerosis (MS) or Neuromyelitis Optica Spectrum Disorder (NMOSD), concerns remain about the potential impact of COVID-19 on these patients given their treatment with immunosuppressive or immunomodulatory therapies. In this study, we review the existing literature investigating the impact of disease-modifying therapies(DMT) on COVID-19 risks in this group of patients. METHOD: For this systematic review, we searched PubMed from January 1, 2020, to December 3, 2020. The following keywords were used: "COVID-19" AND "Multiple Sclerosis" OR "Neuromyelitis Optica." Articles evaluating COVID-19 in patients with demyelinating diseases of CNS were included. This study evaluates the different aspects of the DMTs in these patients during the COVID-19 era. RESULTS AND CONCLUSION: A total of 262 articles were found. After eliminating duplicates and unrelated research papers, a total of 84 articles met the final inclusion criteria in our study. Overall, the experiences of 2493 MS patients and 37 NMOSD patients with COVID-19 were included in this review. Among them, 46(1.8%) MS patients died(the global death-to-case ratio of Covid-19 was reported about 2.1%). Among DMTs, Rituximab had the highest mortality rate (4%). Despite controversies, especially concerning anti-CD20 monoclonal antibody therapies, a relation between DMT-use and COVID-19 disease- course was not found in many studies. This observation reinforces the recommendation of not stopping current DMTs. Other variables such as age, higher expanded disability status scale (EDSS) scores, cardiac comorbidities, and obesity were independent risk factors for severe COVID-19. Despite the risks of infection, most patients were willing to continue their DMT during the pandemic because of more significant concern about the risk of relapse or worsening MS symptoms. After the infection, an immune response's attenuation was seen in the patients on Fingolimod and anti-CD20 monoclonal antibodies. This may be a critical finding in future vaccinations.


Assuntos
COVID-19 , Esclerose Múltipla , Sistema Nervoso Central , Humanos , Fatores Imunológicos/uso terapêutico , Esclerose Múltipla/tratamento farmacológico , Esclerose Múltipla/epidemiologia , SARS-CoV-2
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...